The Maximum Colorful Arborescence problem parameterized by the structure of its color hierarchy graph
نویسندگان
چکیده
Let G = (V,A) be a vertex-colored arc-weighted directed acyclic graph (DAG) rooted in some vertex r. The color hierarchy graph H(G) of G is defined as follows: V (H(G)) is the color set C of G, and H(G) has an arc from c to c if G has an arc from a vertex of color c to a vertex of color c. We study the Maximum Colorful Arborescence (MCA) problem, which takes as input a DAG G such that H(G) is also a DAG, and aims at finding in G a maximum-weight arborescence rooted in r in which no color appears more than once. The MCA problem models the de novo inference of unknown metabolites by mass spectrometry experiments. Although the problem has been introduced ten years ago (under a different name), it was only recently pointed out that a crucial additional property in the problem definition was missing: by essence, H(G) must be a DAG. In this paper, we further investigate MCA under this new light and provide new algorithmic results for this problem, with a specific focus on fixed-parameter tractability (FPT) issues for different structural parameters of H(G). In particular, we show there exists an O(3 ∗ H) time algorithm for solving MCA, where nH is the number of vertices of indegree at least two in H(G), thereby improving the O(3) algorithm from Böcker et al. [Proc. ECCB ’08]. We also prove that MCA is W[2]-hard relatively to the treewidth Ht of the underlying undirected graph of H(G), and further show that it is FPT relatively to Ht + lC , where lC := |V | − |C|. 2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory
منابع مشابه
Parameterized Complexity of the MINCCA Problem on Graphs of Bounded Decomposability
In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The Minimum Changeover Cost Arborescence (MinCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by Gözüpek e...
متن کاملHitting Forbidden Subgraphs in Graphs of Bounded Treewidth
We study the complexity of a generic hitting problem HSubgraph Hitting, where given a fixed pattern graph H and an input graph G, we seek for the minimum size of a set X ⊆ V (G) that hits all subgraphs of G isomorphic to H. In the colorful variant of the problem, each vertex of G is precolored with some color from V (H) and we require to hit only H-subgraphs with matching colors. Standard techn...
متن کاملParameterized Complexity and Approximation Issues for the Colorful Components Problems
The quest for colorful components (connected components where each color is associated with at most one vertex) inside a vertex-colored graph has been widely considered in the last ten years. Here we consider two variants, Minimum Colorful Components (MCC) and Maximum Edges in transitive Closure (MEC), introduced in the context of orthology gene identification in bioinformatics. The input of bo...
متن کاملOn the Kernelization Complexity of Colorful Motifs
The Colorful Motif problem asks if, given a vertex-colored graph G, there exists a subset S of vertices of G such that the graph induced by G on S is connected and contains every color in the graph exactly once. The problem is motivated by applications in computational biology and is also well-studied from the theoretical point of view. In particular, it is known to be NPcomplete even on trees ...
متن کاملDesigning Deterministic Polynomial-Space Algorithms by Color-Coding Multivariate Polynomials∗
In recent years, several powerful techniques have been developed to design randomized polynomial-space parameterized algorithms. In this paper, we introduce an enhancement of color coding to design deterministic polynomial-space parameterized algorithms. Our approach aims at reducing the number of random choices by exploiting the special structure of a solution. Using our approach, we derive po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.07584 شماره
صفحات -
تاریخ انتشار 2017